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Reports

Solid-Phase Synthesis of C-Terminal Peptide  acid (see Scheme 13 The thiol group is nucleophilic

Hydroxamic Acids enough to undergo thioesterification with Boc-amino acids
preactivated by PyAOP and DIEA. After attachment of the
Wei Zhang, Lianshan Zhang, Xianfeng Li, first Boc-amino acid to the alkylthiol resif,12> assembly
John A. Weigel,* Steven E. Hall, and John P. Mayer of the peptide sequence was achieved by standard solid-phase
Sphinx Pharmaceuticals, A Bision of Eli Lilly peptide synthesis methodoldgyusing preactivated Boc-
and Company, 840 Memorial Dre, amino acids (Boc-amino acid:PyAOP:DIEA, 1:1:1.5). Re-
Cambridge, Massachusetts 02139 moval of the N-terminal Boc protecting group and subsequent
Receied July 26, 2000 neutralization with 5% DIEA in DMF, or acetylation of the

N-terminus by AeO/DIEA/DMF (1:1:8), resulted in peptide
thioester resin® and 3, respectively. Resin® and 3 were

then subjected to nucleophilic cleavage by hydroxylamines.
Several commercially available hydroxylamine derivatives
were used to determine optimal cleavage conditions, includ-
ing the following: 50% aqueous hydroxylamine, bBH:

HCI (neutralized by 1 equiv of DIEA)Q-trityl hydroxyl-
amine, O-benzyl hydroxylamine, an®-trimethylsilyl hy-
droxylamine. When the peptide thioesters were linked to
TentaGel resins, the aqueous hydroxylamine caused severe

solid-phase synthesis has become an important tool for . .
production of combinatorial libraries and lead generation, hydroly§|s € 30%, accordmg o H.PLC e.md. LC/MS analysgs),
addition to hydroxylaminolysis. This is due to the high

and there have been several reports describing solid-phasén o . . .
syntheses of hydroxamic acid derivativen principle, suscgptlblhty pf the thioester linkage .to basic aqueous
hydroxamic acids may be obtained by direct cleavage of conditions. Using polystyrene-based resins and nonaqueous

resin-bound esters with hydroxylamine derivatives; however, reactio_n conditions, our results indicate that_dﬂ]ﬂi-HC_l

it has been reported that this approach does not giveﬂeutrallzed 'by 1 equw.of basg cleaves the th|oest§r linkage
reproducible result&9 Therefore, solid-phase synthesis of N DMF, which is consistent with the results of Muir et’al.
hydroxamic acid derivatives generally involves either im- However, NHOH-HCI has poor solubility in most organic
mobilization of the hydroxylamine group through a specia

Hydroxamic acids are strong metal ion chelators and
represent a wide spectrum of bioactive agents with antibacte-
rial, antifungal, and anticancer propertids. particular, they
have been identified as potent inhibitors of matrix metallo-
proteinases (MMPS)a family of zinc-dependent endopro-
teinases involved in extracellular matrix remodeling. Hy-
droxamic acids have generally been synthesized in solution
from nitro compoundsor by acylation of hydroxylamine
and its derivatives with activated carboxylic actd@ecently,

| solvents except for DMF, which brought difficulties to the

N- or O-linkage or formation of a protected resin-bound Work_up after cleavage due to it§ high boiling point. Clgavage
hydroxamate. In the current report, we describe a facile PY {rityl protected hydroxylamine was sluggish, which we
approach for the synthesis of peptide hydroxamic acids basedfitribute to steric hindrance. While bodibenzyl hydroxyl-

on cleavage of resin-bound thioesters. During the preparation@Mine and O-trimethylsilyl hydroxylamine cleaved the
of this manuscript, Muir et al. described preliminary results thioester linkage, the latter has the advantage of a more
of thioester resin cleavage by different nucleophiles including convenient O-deprotection. Therefof@strimethylsilyl hy-
hydroxylamine’ droxylamine was used for cleavage of peptide thioester

The thioester linkage, originally introduced by Hojo and €Sins2 and 3. In a representative reaction, 30 equiv of
Aimoto® has served as an important tethering group in O-trimethyisilyl hydroxylamine in dry THF or toluene
synthetic peptide and protein chemistry, useful for fragment displaced the thioester linker within 24 h at 26. After
coupling® chemical ligatiori® and formation of peptide cleavage, the _TMS protecting group was cleanly rerr_10ved
dendrimerd' and cyclic peptide& Applications of the Py 5% TFA in CHCl.. The cleavage was essentially
thioester linkage in solid-phase synthesis of small moleculesguantitative, as demonstrated by a negative ninhydrin test
have also been reporté¥i Since the thioester linkage is for the resin after cleavage of compourdsto 4.7. A library
susceptible to nucleophilic attack but stable to TFA treatment Of 17 peptide hydroxamic acids was synthesized with good
during solid-phase peptide synthesis (using standard Bocto excellent purity (Table 1).
protection), we envisioned that hydroxylamine derivatives = These results indicate that this methodology affords
could directly cleave resin-bound peptide thioesters to form efficient preparation of peptide hydroxamic acids under mild

the corresponding peptide hydroxamates. conditions. Moreover, it does not require additional synthesis
Peptide chains were assembled on polystyrene resinsof a special linker between the peptide and the resin since
bearing the 3-mercaptopropiofilor 2-mercaptoaceti commercially available thiol-containing resins can be used

moiety and TentaG#& derivatized with 3-mercaptopropionic  directly. An advantage of usin@-trimethylsilyl hydroxyl-

10.1021/cc000067i CCC: $20.00 © 2001 American Chemical Society
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Scheme 1. Synthesis of Peptide Hydroxamic Acids Using bridge, MA, for their help and useful discussions. We also
Thioester Resth thank Mr. Ben Liu for his assistance with MALDI-TOF MS
o * analyses.
Ho—@ —2— Boc-AAJ\S—‘M— Bocs—.
1 Supporting Information Available. General procedure
o for peptide hydroxamate synthesis. This material is available
b, ¢ free of charge via the Internet at http:/pubs.acs.org.
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